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BUCKLING OF RECTANGULAR ISOTROPIC OR ORTHOGONAL ANISOTROPIC
PLATES UNDER SHEAR STRESSES

E. Seydel, Berlin-Adlershof

1. Delineation of the problem. Thin plates (sheet metal /169*
or plywood) are used as crosspieces for solid wall arch
supports or, 1in alrcraft construction, especially as the
sheathing of wings or fuselage. If these construction parts
are loaded, the orliginally flat plates, under a certain load,
buckle. In mos*% practical cases, the loads on the plates are

generally shear stresses.

As a contribution to the solution of the resulting problems,
the following will be assumed: a completely flat, rectangular,
thin, homogeneous plate of constant thickness is mounted at the
edges without stress. The edge supports are rigid, and the
camps holding the plate to the edge supports are made so that
the plate cannot buckle out of its plane along the four straight
edges. Along the four edges an evenly distributed shear force
t, conctant throughout, is applied and, if the force is small
enough so that the plate remains flat, a shear stress which 1s
constant throughout the entire surface of the plate is produced
{see Fig. 1). The problem is now to determine the critical lcad
ters at which, under pure shear stress, the plate is no longer
in stable equilibrium, that is, at which the plate no longer
remains flat, but begins to buckle.l This problem is of impor-
tance not only for isotropir plates, but also for orthogonal-

1 Often this critical load is designated as the cracking load.
But since the plate can remain capable of bearing a load after
surpassing thils critical load, we use the expression "buckle"
instead of "crack" to indicate that, in practice, reaching of the
critical load does not lead immediately to breaking of the plate,
in constrast with a rcad under compression.

¥Numbers 1in the margin indicate pagination in the foreign text.



anisotropic (orthotropic) plates. (In practice, such ortho-
tropic plates are plywood sheets, and, with a certain approxima-
tion, also reinforced plates with suitably placed, relatively
closely space supports, as well as corrugated steel plates.

Sheet metal plates as well, because of the rolling process, show
a certain orthogonal anisotropy, the effect of which, however, 1is
sc small that sheet metal slabs may be viewed as isotropic plates
for technical purposes).

The problem just described has already been treated
several times: Reissner [1, 2] and Timoshenko [3] have developed,in
various ways, an approximate solution to the problem, starting
with just isotropic plates. For a specific case of the problem,
Southwell and Skan [4] gave an exact solution, namely, for the
extreme case of an infinitely long isotropic plate, which was
discussed by Bergmann and Reissner [2], and also in a supple- /170
mentary study [1], also for an orthotropic plate. Sekeriy-
Tsenkovich, in connection with the work of Timoshenko, calculated
the critical shear stress for a rectangular plywood plate (with
given stiffness values), i.e. an example of an orthotropic
plate. Sekeriy-Tsenkowich did what Timoshenko had done and
used, following the procedure used by Bryan-Ritz in the investi-
gation of the extreme case of an infinitely long plate, an
expression different from that for the case of a rectangular
plate of finite length, an expression which satisfied neither the
differential equation, nor the boundary conditions. Bergmann
and Reilssner [5], as has been mentioned, took an approach different
from Timoshenko's in deriving the calculation procedures, and,
moreover, have taken the approximation calculation further.

This work, baszed on a suggestion of Professor Reissner,
continues the work of Bergmann and Relssner. The work
contains the following individual investigations:

The Relssner method is applied to orthotropic plates.
The investigations of isotropic plates mentioned in the



publications given above will be
extended. For infinitely long
plates, approximate values will
be calculated from the same
Tﬁ.......!._._. expression used in the treatment
; ': of plates of finite length. This
I,
t

approximate solution will be
compared with the exact (Southwell-
Skan) solution with regard to both
the value of the critical load, and
Fig. 1. Rectangular plate the shape of the buckled surface.
under evenly distributed In this case the precision of

shear force t applied
along edges. PP the method can be satisfactorily
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assessed. In another extreme case
of rectangular plates, namely for
the square plate, previous studies will be extended by pushing
the approximation further; this is made possible first by the
fact that the numerical treatment of this special case can be
simplified for reasons of symmetry, and, second, by the fact
that a procedure will be given by which the critical load and the
coefficients for the series expansion of the function representing
the buckled surface may be calculated, using successive approxima-
tions. It will turn out that these coefficients decrease rather
rapidly, so the series appears to converge well. This is a
circumstance which is particularly useful 1in deciding whether
the expression given by Reissner and Timoshenko yields the
correct result. In order to get a convenient numerical treat-
ment for a plate with an arbitrary ratio between the sides, the
number of terms in the serles expansion of the buckling function
should not be too large; for each ratio between the sides of
the plate, terms wlth specific coefficients are found which
provide the best solutions, 1.e. those with the smallest
buckling load. Finally, based on the calculations executed in
this manner, a curve 1s given for the critical load as a function
of the side ratio of the plate, which ought to agree with the

(WS ]



actual curve with an accuracy sufficient in practice. Similarly,
corresponding calculations are carried out for the orthotropic
plate, and the results of these calculations depicted graphically,
so that this representation can be used to at least estimate the
critical loads for orthotropic plates occurring in practice,

and this immediately without computation. Simultaneously,

the method by which the rather necessary more precise calculation
for an orthotropic plate may be made will be indicated.

2. Trial solution for orthotropic plate. The differen- /171
tial equation of the orthotropic plate problem discussed here
is [6, Eq. (10)]:

He A AP

e
D,—',—,.-+zD,a.~,d’,+D,-5’-, U e, =0 (1)

X and y are the coordinates along two orthogonal axes
coinciding with two sides of the rectangular plates; the other

two sides have the coordinates x = a and y = b (c¢f. Fig. 1).
D1, D2 and D3 are the following abbreviations:

D, = (EN: D, = {ED: 2D, =v, Bl 4, ED 4G,

1—v,v,° 1=y, ’ f1—v,r, Ti-rr, (la)

In these expressions (EJ)y, (EJ)y and M(GJ)xy are the plate
rigidities per unit length, namely

(EJ)y: bending rigidity in x-direction (bending abcut the y-axis),
(EJ)y: bending rigidity in y-direction (bending atout the x-axis),
4(GJ), ¢ torsion rigidity?

Vx and Vy are the Polsson transverse strain coefficients

2For 2 homogeneous, orthotropic plate of constant thickness §
(which will be the case for plywood boards, to a certain approxi-
metion),

& » ™
(EJ)A-E.;;" (E])y=E, 13"’ 4(GJ)sy =G J'.



The smallest of the eigenvalues t corresponding to the
various possible solutions c¢f the differential equation, i.e.,
the eigenfunctions w, with a specific side ratio a/b and the
prescribed boundary conditions (stressless support of the plate
and no curvature along the edges) is the desired critical shear
load ¢tgp.

The equation 1is solved with the aid of the Navier expression
introduced by Timoshenko and Reissner3

nsj’j';ﬂ,.sinm:t%sinnn-{—. (2)

mela=l

Eacli term in this series satisfies the prescribed boundary
conditions. The coefficiznts Ay can te determined not only
by the Ritz method, but also (according to Reissner) in such
fashion that the series formally satisfies the differential
equation (1), and in fact, both methods yield the same deter-
mining equations. In order to obtain an eguation for Amn’ the
above expression for w in Egq. (2) is substituted in the
differential equation, replacing m and n by r and s, and then
the resulting equation is multiplied by sin (m 7 x/a)- sin(n m y/b)
and integrated from 0 to a and from 0 to b. Most of the

integrals vanish, except for

[ 3 .
J'sin’mu -z- dx = ;— .
[/}

-
in m x oS 7 F 4 dx 26 m
fod = PO A
sin m7n e ¢ 7 R 98’
F A

if m + r is odd, and except for the corr.sponding integrals in

3Cf. Reference [2] on p. 1; in this work of Bergmann and Reissner,
the derivation of the equations determining the coefficients Ay,
and the assumptlons under which this method 1s =2mployed are
described in more detalil; therefore, 1in thi. .sork, the derivea ion
will be just sketched.



the y-direction. A simple reformulation yields the following /172
equation for Amn'

c - [ J
32 ¢ m. v Y [4 F ]
dant uly T R 2121 Ay s “paim ™0
Dl POy 30. —.' ’b“*-!-p. b relo~l

In order to obtain the critical shear load in dimensionless
form [6], the following abbreviations are defined:

,.J%éh coefficient of the orthotropic plate (3)
5\
h=2i% = ) C o getmom = (mpas+ 2B e (4a)
a - D.' (] ".‘ “m3

The governing equation for the coefficlents Amn is then:

" 3 5y r 2
A..'.'.(:ﬁ)-*-" PN R e Sl E (5a)

relo=l

This form of the equation is convenlient for numerical
evaluation when the coefficlent 6 > 1, while if 6 < 1, 1s more
convenient to set

5\t
‘(3)

® /Dy .
‘.‘VD: C = ) = mA) 2 (mp At e (I

and use the equations

128

¢.(n| n)
Aqn s~ FTY R + —= n" .g,_Z:A" pv "’~$’=o, (50)

In these equatic s (reglardless of whether the form (5a)
or (5b) is used), the terms in the sum with even sums (or
differences) m + r or n + s vanish. Therefore, as Bergmann



and Reissner first showed in general, two independent systems

of equations are obtained: one (I) contalning the unknowns Ap,
when the sum (m + n) of the indices 1is even, and a second (II)
when the sum of the indices (m + n) is odd. In both cases the
number of unknowns Amn and of course the number of governing
equations is infinitely large. Since the equations are homo-
geneous, the denominator determinant of the systems of equations
must vanish; this is the condition from which c, or cy, i.e.

the desired critical shear load, must be calculated. It is

found that these infinite determinants do not have the properties
previously required by mathematicians for a convergent calcula-
tion of unknowns. In particular, it 1is noteworthy that the
otherwise usable iteration methods [8] seem to fail for Egs. (5a)
and (5b). Moreover, a practical, sufficiently accurate
approximation cannot be made unless the unknowns Amn of a

system of equations can be divided into two groups in such a
fashion that the first iInfluential group contains only as many
unknowns Ap, as can be determined conveniently when the unknowns
Amn of the second group are neglected. The problem is then to
discover the block of indices (m, n) which is most influential.
This block does not always have to stand at the beginning of

the double series. The unknowns Amn of the second group must
then be so small that their influence on the critical shear

load and on the unknowns of the first group will be negligibly
small. If these prerequisites are satisfied, an approximation /173
is possible; however, for each new side ratio a/b and each new
rigidity ratio 6 (3), the unknownsAp, in the first group involved
in calculating the critical shear load must be determined all
over again.

3. The infinitely long 1isotropic plate. 1In the eouations
developed in the previous section, the isotropic plate was a
special case. Namely, for an 1isotroplc, homogeneous plate of
constant thickness §,



(6)

Es
Dy=Dy=Dy=D= =%,

where E is the modulus of elasticity of the material and v is

the transverse strain coefficlent (Poisson's ratio). According
to (3), 6 = 1, and in accordance with (4a) or (4b)

p=< (=f=p. (1)
b\?

P 0m,n) = (B + w1 (= g (5. 1) = gy (. ).

(i C.) ’

Temporarily, let us use the abbreviation

]
€=t

In that case (5a) or (5b) is replaced by the following equation
for the isotropic plate
4 "M"‘CZZA";‘:":,?F:—T’"O'

LAY

- : rwl s=1 (8)

If we now transpose to the limiting case a » », 1.e. B + 0
(infinitely long plate), Eq. (8, would supply the value C = @,
i.e. an infinitely large critical shear load, as long as finite
whole numbers were substituted for m and n (and correspondingly
for r and s) and as long as the coefficients Amn (Ars
finite, nonvanishing values. This 1s because more and more terms

) assumed

of higher order in m must be taken as the plate grows in the x-
direction; namely, the assumption of finite m (r) with an
infinitely long plate means an infinitely large half-wavelength
of the buckled surface. Therefore, in order to obtain a finite
half-wavelength for the buckled surface, it seems logical to
assume values m {(r) of the same order of magnitude as the length
of the plate, 1.e. as the same order of magnitude as 1/8. If
1/8 goes to infinity, the values m and r must also be taken to



be of the order of magnitude infinity. We presume that it is
sufficient to examine a limited number of coefficients Ap,. In
order to express the fact that m and r are in general different
values of the same crder of magnitude, we substitute in (€,

mu=ytm, r=gtn,

where m; and r, are integers (or equal to 0), while a is a
finite number (a can only assume values such that a/B 1s an
integer). Passing to the 1limit B8 + 0 and using the abbreviation

a/B = p,

we obtain the equation
=t @
]

Agrmin !'(s';:) + CT:' 2 Zd(pwula ,',;"'::';" e el
- . . fRo=w gl ( 9 )

where

~
[
N —y

P (x, 8) = (2t 5 ")t

The system of equations given by Eq. (9) also breaks down into

two systems of equations: one for even sums (ml + n) and a
second for odd sums (ml + n). The meaning of o 1s demonstrated
by the following conslderation: the function sin(m m x/a) 1s a
sinusoidal (wave) line with the half-wavelength

- [ J

b=2 (10)

Using the above expression for m and a = b/B, this can also be
written

For g + 0,

(11)



The reciprocal of a 1s therefore the ratic of the half-wavelength
to the width of the infinitely long plate. While ¢ can only
assume specific values (since m must always be an integer) 1if

the plate length a is finite, the variable a can assume any
artitrary positive value in a limiting case a + ». This is

also consistent with the results of the Southwell-Skan exact
solution of the differential equation.

The coefficients C of the shear forces ( eigenvalues) t,
which are possible solutions of the differential equdation, are
roots of an equation obtained by setting the denominator deter-
minant of the system (9) equal to 0. In practice, the culcula-
tion can be made only for a finite number of equaticns with
a finite number of unknowns A. The unknowns A of each system
of equations (with odd or ~ven (m1 + n)) can be broken down into
two groups: one group with even index n and a second group with
odd n. (Analogously, the groups could be distinguished on the
basis of ml). In each equation of the two systems, there is
only one unknown A of one of the groups, while all the ot?
unknowns A are of the other group. Accordingly, there a. WO
groups of equations in each system. Since c™1 does not occur
as a factor in one group, C+A (instead of A) is introduced as
an unknown in one group. The system of coefficlents of the
system of equations then has the form depicted in Table 1, which
1llustrates the system with >dd (m; + n). Only the eq. 17 .s
for the indices (p-3) through (p+3) (in the longitudina..
direction) and n = 1 chrough n = 3 (in the transverse direction)
are written. The coefficlents with larger m; or n are assumed
to be negligible. The error in C or Cy nroduced by this elimina-
tien should be compared with the exact value of C or ¢, known
in thils cese. In the system with odd (ml + n) we now have

= + n? when n 1s odd,

A(p + my)n A (p-my)

A(p + mp)n = - A (p-my)n’ when n 1s even.

10



Taking this into accoun. and expressing the unknowns A(p + 2)1°
A(p + 2)3° Ap1 and Ap3 in term: of A(p + 1)2 and A(p + 3)2
(first group of equations), and substituting this in the second
group of equations, we finally obtaln just two equations with

yne .. v second~order
the unknown A(p +1)2 and A( i.e. just a

>
determinant, and, by setting Et+eg&§1 to 0, a guadratic equatlion
for x = 0'2. A determinant with just two terms 1s also obtained
when even more unknowns A are aken into consideration, namely
with the indices (p - 4) through (p + 4) and n = 1 throvgh 3 or
the indices (p - 2) through (p + 2) in the longitudinal direction,
and n = 1 through 5 in {lhe transverse direction (i.e. five indices
in each direction). In the first case (i.e. with nine indices

in the longitudinal direction and three inaices 1n the transverse
Adirection), we obtain

s+
Ca™= 0161492 - = - >

Vsl *+ sl (12)

This function c, kas a minimum at o = 0.7995. 1In the second

case (five indices in each direction), the formrla for cg 1is
noet as simple. The first case ylelds more accurate values, and
cannot be distirgulshed from the true curve in the graph in
Fig. 2. This di=zram also shows the curve obtalned with three
indices each in che lcongitudinal and transverse directions.

Fo. the preclse curve (corresrvonding tc the Southwall-Skan
solution), the mini:wum Cq = 13.165 is between &/b = 1.235 and
1.257 [6, Table I] near &/b = 1.25 (i.e. a = 0.8). The value
given above, a = 0.7995, for the approxlmate curve is in
excellent agreement with this figure. Apart from the approxima-
tion already discussed, Iurther approximatlions with smaller
values of my and n have been made for o = 0.8 and the results
coliected in Table 2. For the longitudinal direction, only the
number of (successive) indic=s used in the approximation is
glven, since the result 1is independent of whetlhier the indices
are taken from (p + 1) through (p + 9) or from (p - 4) tnrough

11
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(p + 4); in a transverse direction, the first index is always
n=1. Table 2 shows that in order to obtain a good
approximation, it is best to take more terms in the longitudinal
direction than in the transverse direction, and that the error
of the best approximation (nine longitudinal indices, three
transverse indices) is less than 0.5%. For larger values of

a, the errors in the approximation with this expression are
substantially larger, e.g. 4.65% for a = 3 and 13% for o = 4,
while the approximation with five longitudinal and transverse
indices yields an error of only 0.65% even for a = 4. The
smaller the wavelength (i.e. the larger a), the greater the
influence of the number of indices n in the transverse direction.

In the system /177
of equations with

Py even sum (m; + n),
the same value Ca

7, is ob.ained as in

n-/,..’z.,,..y the corresponding

o )
J ‘ system of equation.
with odd sum (m, + n)
__———‘:::;::b ; L

a8y _ i gt o) with a given number

2 of indices in the

v ) el B
' longitudinal and

rig. 2. Coefficient ¢, of the critical transverse directions.
shear load of an 1nf1n§te1y long, iso- The buckled surface
tropic plate as a function of &/b (& =

haif-wavelength of the buckled surface, represented by the

b = width of plate). Comparison of function w, the
various approximate solutions with 1. .
exact solution. (The best of the calculation of which

approximate sclutions virtually coin- is yet to come, is
cides with the exzct solution.) The

number p is infinitely large, corres-
ponding to the number of waves. there 1s only a

the same in both cases;

Key: a. Exact solution difference in the
b. Between two curves position of ti.c

origin of the

13



TABLE 2. COEFFICIENT ¢, = topn(b/2)2/D OF
CRITICAL SHEAR LOAD IN YARIOUS APPROXIMATIONS
FOR INFINITELY LONG PLATE AS COMPARED WITH
EXACT VALUE c, = 13.165

Number of indices of A ¢ Deviation from
mn a .
taken in approximated cg = 13.165 in
%
Longitudinal Transverse
direction direction
3 3 14.678 11.65
4 3 14.145 7.5
] 3 139 5.6
s’ 3 13.28¢ o.88
s s 13.233 0.33
2 3 13.219 0.41

coordinate system, lying in one case on a nodal line, and in

the other case halfway between two nodal lines. A corresponding
difference also turns up in the Southwall-Skan exact solution,
and in fact between the real and imaginary parts of the function

W.

In order to derict the form of the buckled surface, the
function w must be calculated numerically by Eg. (2); however,
this cannot be done directly for an infinitely long plate, since
the origin of the coordinate system is a2t infinity, so that at
first, no specific value can be given for sin (m 7 x/a). The
formula must be developed further. For this purpose, the function
Wam = sin (m m x/a) for a relatively long plate of length a will
be considered, m being so large that the half-wavelength of this
function is on the order of the plate width. 1In the graphic
m in Fig. 3, the middle half-wave is
emphasized (an odd number is assumed for m.) The functions

representation of Wy

Wa(m + 1) Wa(p + 2) and Wyp 4 3y with 1, 2 and 3 higher

14



half-wave numbers than w,, are depicted. The larger the number
m of the half-waves lying within the length a, the smaller the
differences in half-wavelengths in these four cases; in the
liniting case m + », in which case a + » at the same time, the
half-wavelength must be equal in all four cases (cf. Eq. (11)
unless the half-wavelength vanishes, and, if the origin is
taken at the beginning of one of the center half-waves, the
four functions “epicted in Fig. 3 can be written:

2 g . » t 4
T 2CSR ;3 —sinx ;] 4 —C0SAT.

I sinx 1

by transposing to the limiting case a + = and keeping Eq.(10)
in mind. To calculate the buckling function -- e¢f. Eq. (2) --
for the infinitely long plate, we obtain the equation:

w=sing x Z' Ay renn sinux—:-- Z Ac.nnn-'i“"“"."]
S et T

. ’ . y
+ cosz 5 2 Agirrena Sinnzn :— - 2 Apravinnsinn |,
26~0,1,2.3.., 26~0,1,2.3...

a=1338... ne1,83...

Here, % is obtained from (11). The number p, which occurs only
in the indices of the coefficient A, and which was introduced

in the derivation of Eq. (9), is infinitely large, in accordance
with the number of waves.

Using this equation, the buckled shape was calculated /178
under the assumption a = 0.8 (& = 1.25 b) for five ‘ndices
in the longitudinal direction (p - 2 through p + 2) and three
indices in the transverse direction (n = 1 through 3), in order
to demonstrate the difference in the buckled shape obtalined by
the exact method (Southwall-Skan) and by the approximation. This
difference is shown in the contours depicted in Fig. U; the
solid lines correspond to the exact solution. 1In the left half
of the diagram, the broken lines represent the contours

15
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corresponding to the
approximation described

- a above, whenever they

tq_-ﬁ-zf r‘?? . differ from the exact

' L solution. The differences
‘W")‘f ,:'::f. 1‘ are greatest for the

! s nodal line (w = 0). 1In
1

! the left half of the

D agin X B
LN o :
L=;=f$><7‘=*%:ﬁ><=f==<7‘=¥—£ diagram, the nodal line
i “oat - :

' resulting from a further

|
|
)= .ﬁ'”‘! ‘ﬂ:.‘, ]
rwao~' e | = approximation (five
it

indices in each direction)

1s plotted as a dotted
Fig. 3. Sinusoidal lines with various
numbers of periods in a specific line, closer to the exact

length a. (Passing to the limit line than the broken line.
2 +g; ing 3 ;mwi ;?,Obtain n = Ao+ The coefficients Amn
(or A(p + my)n ) with
which the buckled surface
was calculated are collected in Table 3, which also contains the
values Amn for the approximation not used in the graphic repre-
sentation in nine indices in the longitudinal directlon and
three indices in the transverse direction. The coefficients A,
can be determined from system (9) up to a factor identical in
all coefficients, which was chosen 1in all calculations so that
the maximum buckling was wp,y = 1.0. The values Ap + m1)n
decreased as the indices m; and n increase; 1t can also be
recognized from the table that it 1s better to take a larger
number of 1indices in the longltudinal direction than in the
transverse direction. A conspicuous feature is the influence
of the inclusion of the term A(p + 3)2> which as opposed to
the first two approximations given in Table 3, causes a change
in A

pl and A(p + 20 which 1s greater than A(p + 3)2 itself.

Comparisons of both the buckled surfaces, obtained by the
approximation and by the exact solution for the infinitely long

17
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Fig. 4. Contours of buckled surface
of infiniicliy long isoptropic plate.
Comparison of approximations with
exact solution for /b = 1.25.

R R e

Exact solution

Approximate solution:(p + 1)
through (p + 5); n =1

through 3 (only on the left
half of the diagram).
Approximate solution: (p + 1)
through (p + 5); n = 1 through
5 (only for a nodal line w =
0).

plate, and of the
corresponding critical
shear loads show excellent
agreement, which can be
considered sufficiently
precise for practical
Although the
approximation does not

purposes.

go beyond cases ylelding

a complete determinate

of two terms for the
determination of the
critical shear load, the
error in this approximation
is less than 0.5%;
restricting ourselves to
working with a one-term
determinant (p - 2 through
p +2; n =1 through 3)
still does not make the
errors greater than 1%.
These results were

obtained with rather little
computation, making use

of certain simplifications valid for the speclal case of the

infinitely long plate.
namely the square plate,
simplifications.

4, The square plate.

In the other limiting case of the problem,
it willl also be possible to make certaln

In the case of a square plate, the

same indices are chosen in the % and y-directions because of

symmetry; likewise because of symmetry, Aen = Anm-
relationship simplifies the calculation.

This
These studies of

Bergmann and Reissner [2] showed that the system of equations for
the coefficients Ap, with even sum of indices (m + n) (Case 1)

18
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ylelded the smaller critical shear load (ca). Therefore, with

a square plate, we will deal Jjust with this case. The
coefficients calculated for the unknowns A = using (8) for

B =1 (i.e. a = b) are listed in Table 4, including all unknowns
Apn with luuaices 1 through 5. Once agaln, as with the system

of equations for the infinitely long plate, the unknowns can be
divided into two groups: those with odd indices m:and n (All,
Al3.....A55) and those with even indices m and n (A22, Ary,s Ayy).
By substituting equations of the first group into the Egs. (5a)
or (5b) formulated for A22, A,y and Auu, we finally obtained

just three equations in these three unknowns. (Egqs. (5a) and (5b)
are formulated in general form for Ap,.) C, i.e. the critical
shear load, is then calculated by solving the following third-
order determinant, set equal to zero:

. 17366,596 -
+ 16-10-C* — 3896633 2 164
|- 7047,573 ' o.
- m‘”” + 50+ 104 G2 + 17917703 .- °
4961,1733
- “0,403“ + 179107703 + 64. xol’. C-‘

Expanding this determinant yields the equation:

N
-
o
—

5:.200(:0' C-4* — 66.735 760 (16 C-7)3
+ xz,p.zz&z(to’ C-%) —~ 0,52093462 = 0.

The three roots (103:C-2) of this equation are real and

positive; the largest of these roots has the value 103.c-2 =
1.089822, so that C = 30.292, and Sy = nlc/128 = 23.05. The
other two roots (103-0‘2) yleld values of ¢, which are about

2.7 and 4.2 times as large.

Once C has been determined, the unknowns Apm can then be
calculated. The result of this calculation is shown in Table

20



5, and again the coefficients Ap, have been calculated 1in such
a fashion that the meximum buckling occurring in the center of
“he plate 1is wp,, = 1.0. The table also glves the corresponding
results for the cases in which the indices m and n run not from
1 through 5 but instead through 2, 3 or 4 and finally through 6.
When the indices run only through 2 or 3, C is obtained from a
simple determinant (for A22) instead of a third-order deter-
minant; if the indices run through 6, one would eventually have
to solve a complete sixth-order determinant if one proceeded in
the same manner as above. In order to avoid this, another
method was employed (successive approximations of the unknowns

A
nm
mate) value C and the corresponding values Anm’ which would be

and C), which, however, does not supply the precise (approxi-

obtained from the slxth-order determinant; nevertheless, with
relatively little computation, this method will yield values
sufficiently accurate to indicate thav the results of the compu-
tation with indices 1-6 differs very little from the computation
with indices 1-5. 1In particular, 1t 1s evident that the new
unknown A26’ AM6 and A66 are substantially smaller than the other
unknowns in the computation and that there is only a very small

decrease in the approximate c This calculation was performed

as follows: the values Ap, aid the value C calculated for the
indices 1 through 5 were substituted as first approximationsin
the new system of equations for the indices 1 through 6. This
system involved the new unknowns A26’ Aus’ and A66’ which all
belong to the second group of unknowns (with even indices). For
these new unknowns, the first approximations multiplied by
c-1(c™! A,g, €1 Ayg and C-1 Agg) were calculated from the new
equations contalning only one of these unknowns together with
unknowns of the first group (with odd indices). Since the
unknowns Amn are determined only up to an arbitrary factor, one
of the Ap, could be chosen arbitrarily, e.g. we set Ay; = 1 and
then introduced the unknowns xp, = Ap,/Aj; to replace the Ann
Once first approximations have been found for Xxpg, Xj¢ and xg¢,/182

a new (second) approximation C=2 ( = C-2 xll) can be calculated

21
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from the first equation {(the equation for A;;) and this second
approximation will depend only on the values Xmn of the second
group. Next, the unknowns of the second group multiplied by
c~2 (c-2 X135 c-2 X33» c-2 x15 ete) were calculated and, once
the second approximation Xmn of the first group has been
calculated (after division by the second approximation C-2),
the second approximationsxmn of the second group, multiplied
by ¢-1, (c-1 X505 c-1 X,, etc) were calculated. The procedure
was repeated until the unknowns x,, and C no longer changed
appreciably. In order for the method to be usable, the new X
must be relatlively small and the changes induced by their
inclusion in the other values Xmn and in C must also be relatively
small. The method was also employed in appropriate fashion in
passing from the system of equations with indices 1-3 to the
system with 1-4, and from the latter system to that with indices
1-5. Since 1In these two cases, exact solutions of the systems

of equations have also been calculated, the results of these
solutlons were compared with the successive approximation

method. The comparison showed that in the fourth approximation

of the latter method, the results of both methods agreed to

four places, and usually five. The results of four approximations

for indices 1-6 are listed in Table 6.

n

Based on the approximation cy to the critical shear load
calculated for the square plate, it 1s reasonable to assume
that the exact value cy will not be much less than the value
cg = 23.05 ootained in the calculation with the indices 1 through
5. Moreover, including more indlces does not seemn to change
the buckled surface itself very much, since the addictional
coefficlents Amn are relatively small and the approximations ngi
to the buckled surface using indices 1 through 5 and 1 through
3 differ very little, as shown in Fig. 5. Hence 1t seems
legitimate to suppose that including more indices in the
approximation will not bring about any substantial changes 1n

the buckled surface. Also, as a comparison of the coefficients

23



TABLE 6. CALCULATION OF x

SHEAR FORCE (C = 128 tor

mn

( = Ap,/Ay;) AUD C, THE CRITICAL
(b/2)2/74D) BY SUCCESSIVE APPROXIMATION

FOR THE SQUARE PLATE, USING COEFFICIENTS A, WITH INDICES

m=1-6ANDNnN=1 - 6.

[, =2, Approxd E.K mw'ﬂTA?%?c'—
Umégon i imation rm&§0n~ima on
¢ 916,243 | 9170137 | 917.84% | 9178310
30,2783 30,29709 30.29606 30.29574
n, = 0.009348 | — 0.069353 | — 0.069358 | —~ 0.069 3.5
| By + 0033636 | + 0.038676 | + 0.038632 | + 0,03368.
s = 0.004477 | = 0.004473 | — 0,004473 | — 0.004 472
Xy + 0.003971 | 4 0.003962 | + 0.003962 + 0.003962
L + 0001039 | 4 0.001042 | 4 o.001 042 | + 0.001042
F - = 0.293019 | — 0.292863 | ~ 0.292882 | — 0,292895
Xy = 0.004361 | — 0.004308 | — 0.004 300 | — 0.004200
y - 0.002926 { — 0,00300¢ | — 0,003007 | — 0.003¢ -
By = 0,000543 | — 0.000570 | — 0,000569 | — 0,000
By — 0.000981 | — 0.000970 | — 0.000970 | — 0.000
. Fog — 0,000306 | — o.:?oosox = 0.000301 | — 0.0003

Be
(ragorig)

Contours of buckled surface

Fig. 5.
Compari-

of lsotropic square plate.
son of two approximations:
_ m=1-5;n=1-5.
—————————— m=1-3;n=1--3
(only in the lower half
of the diagram)

&)
24 %glpoon QUALITY

Ay, (Tables 3 and 5)
indicates, the series -
for the buckling function
appears to converge
better for the square
plate than for the
infinitely long plate.
In the latter case,
taking five indices in
both directions gave
an error of only 0.5%
in the critical shear
load.

5. Rectangular
plate of arbitrary
proportions. a) Cal-

cu.ation of coefficient
Ca of critlcal shear
load. If in the formula



for calculating the shear load analogous to Eq. (T7)

~2
top = Gy D (b/2) (13)
b is always taken to be the short side of *he recztangular plate,
it 1s only necessary to find the cocefficient cy for values

B = b/a which lie between 0 and 1. These two e.rreme cases

for the range of B8, representing the infinitely long plate and
the square plate, have already been discussed in detail in

the previous sections. The calculation for arbitrary data
could now be carried out as it was done for the square plate.

If four or five indices (1 - 4 or 1 - 5) each are taken in the
longitudinal and transverse directions, one wowld eventually
have to solve a complete fourth-order determinant (instead of
the third-order determinant for g = 1) in Case I (since Ay #
Ahz)' With indices 1 - 4, this calculation has been carried

out by Bergmann and Relssner, and the results compared with

the result for indices 1 theouga 3 in Fig. 3 of their work [2]
(as well as in their Table 3). This comparison shows that the
difference in the results of the two calculations is relatively
small for values of b/a between 0.7 and 1.0, and that the
differences do not begin to increase until b/a is less than 0.7.
In view of the factors mentioned during the calculation for

the infinitely long plate, this increase in the difference as
b/a decreases 1s quite understandable. For the _juare :.late,
the coefficient All is the largest of all coefficients. On

the other hand, as the plate gets longer, the coefficients Amn
with larger m begin to increase, so that the coefficlents with
indices m = 2 or = 3 rr = 4 (and with even larger m for
correspondingly long plates) hecome the largest of 1ll the
coefficlients Ay, and thus can no longer be neglected, as was
the case when only indices 1 through 3 were included. If one
wishes to take only three indices in order to simplify the
calculation, it 1s better in the case of a long plate to take



not indices 1 through 3 but Instead, depending on the ratio
between the sides, e.g. the indices 2 through 4 or even larger
numbers for the longitudinal direction. Fig. 6 depicts the
difference in the results of two calculations with indices

m=1 through 3 and m = 2 through 4 (n = 1 through 3 in both
cases). Up to roughly b/a = 0.37, the calculation with indices
2 through 4 yields smaller, i.e. better approximations for the
critical shear load. For b/a = 0.37, both curves yield the same
value cy which seems somewhat large in comparison with the
value ¢ for adjacent values of b,. Thus if b/a = 0.37, taking
only three indices in the longitudinal direction probably
supplies relatively poorer results than for values of b/a in /184
adjacent regions. If the curves are calculated for indices

1 through 4 in the longitudinal direction and 1 through 3 in
the transverse direction, the resulting values for cg are
smaller than those from either of the two previously calculated
curves (although some of the differences are vanishingly small)
for all values of b/a. As might have been expected, the

maximum difference occurs near b/a = 0.37, the intersection of
the two previous curves. However, even for the value b/a at
which the curve calculated with indices m = 2 through & reaches
it minimum ¢y, the difference is not insignificantly small.
Accordingly, as was also indicated by the results of the various
approximations made in the case of the infinitely long plate,
the best possible approximations would be obtained by following
a previous suggestion of Reissner for decreasing b/a (i.e. for
longer plates) and increasing only the number of indices m in
the longitudinal direction.

Nevertheless, the calculatlion was not executed in this
manner; since first the equations for calculating the curves
cy (b/a) become quite complicated with four indices m, even
if there are only three indices n. Hence, calculating these

curves Involves a gre: . deal more computation than was necessary



» in the case of three
:_. z ’ indices in two directions3.
:::3 ::f:: Moreover, the difference
”r in the results obtained
o- . with five incices as
compared with those
s} - obtained with three indices
netes B ! is much larger for the
T nors . infinitely long plate
than for the square plate;
. . S for ratios b/a lying /185
(] . ::4 alo ! clt l ; ﬁl (4 between 0 and 1, it might
Fig. 6. ¢, = tep(b/2)2/D (Coe{- 4 therefore be assumed that
ficient of tne hiviedl sheal 1oad  the atrference will be
of the ratio B = b/a between the smaller than for the

3Just how great the difference in computation is can be seen e.g.

from the equations for the three curves depicted in Fig. 6. These
equations read

for m

= 1 through 3 and n = 1 tf.rough 3: u,(“.%) .
‘.-ﬁ-————ﬁ—.———_‘_———_"—'
]f m"}””[@ﬂ'-{— o AT EaT

for m = =

2 through 4 and n 1 through 3:

ot ]
Cq OB e - — —
* 1 T s T M |4 J 2 M
’V{[s(ﬂ'+ x)] +[(9P+ x)n{[:(ﬂ'+ fi] +[1(4P‘+ :)].}
For numerical calculations, these equations are relatively simple
when compared with the equation:

for m = 1 through 4 and n = 1 thrcugh 3:

where:
—_t 2 . . .
ST e AT S .
S Re— 7 2~ T L e }
fEFETWFTY { ‘[ s/ @ 7 0P+



TABLE 7a and

b.

SYSTEMS OF COEFFICIENTS FOR THE EQUATIONS (8)

a) q odd: Case I
q even: Case II
Y"’ ) ' 4 4 o4 c
'Y ' o3 et 30 e “Agsr,a
rmyn '
.1 2l 1) ° i° e ‘ o gy 2
T ' -3¢~ —3
3 ° ole.3) ° ° g+r 2
g3 TR Y
g4+ 2.1 o o _.,L'.-_'-z") ° _'_"L.._f_
@+2)-2- +2¢43 -3
t4+2.3 ° ° ° | vig+2.3) ke 2
@+2-3-8 | +204+3 +5
A B R N Y __'_*i.._l_'ﬂl_t'ﬂ
. +20+s +3 Fatr —s |- +3l“3!"3 —3 ' (g+1)-2-p
b) q even: Case 1
q ocdd: Case II
Agiene N TR | '
N Aerrn | Aerrs ' Cedga TC-Ayans
]
'EaAN! g+t —1 . I gtz 2
(+1)-2.8 ° +2941 -3 —3g-3 -3
+13 o i e+ ! ' gtz a3
i e+1)3-p +2e+c +3 —2¢—3 ¥3
. g4z L g4 3 ,(q.z) i
2 3= FY | Tagov S | geas ’c- ' e
+1 .1 e+1_ 3 , I ..
+32 _1+v T N P pigtea) -
1+ Fura T3 | Fagda =3 ¢ w+a-2.8%
where z' and z" are to be calculated from
Y U N UL !
’ (lx"'m;} +p +as[w+9)'+(9ﬁ‘+ l)‘]'
Pt J..,..n.".)-.l...,._'__..__.p_ .
. as\81 | Sas/ (B P T Gas B o) T w9+
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Furthermore, in view of the practical significance of the

entire problem, which will be discussed in more detail later
[9], it dcesn't make much sense to determine the curve c, (b/a)
with extreme precision. Therefore, it appears pecfectly
sufficient to calculate the various approximations c, (b/a) for
three successive indices m in the longitudinal direction and

for the indices n = 1 through 3 in the transverse direction,

and to estimate the desired exact curves Cy (b/a) on the basis
of these approximations. The difference between the approximate
curves calculated with three indices and the exact values will
be greatest in the extreme case b/a = 0, i.e. for the infinitely
long plate, in which the difference is less than 12%, calculated
earlier. Over its entire range, the errors in the estimated
curve should amount to only a fraction of this difference. If [/1£6
the indices in the longitudinal direction are designated m = ¢,
(@ + 1) and (g + 2) and those in the transverse direction n =

1 through 3, (8) can be used to acquire the systems of equations
given in Table 7a and 7b. These systems of equations are solved
in the previous manner, resulting in the following two equations
for cz, using the symbols given in (7):

e11«+xt) ! ——
e ™ 18 2(g+ 1)f *_T__’ ° WIETR 1 9
' (3!+ ) [97(1.1)"':"(1. 3) +(tq-i- [9'(f+ z-l)+zsv(1+:.s) (1%)

(Case I, when q is odd),(Case II, when q is even)

and 1

9 ] ¢ + (¢ +2)* ]
59+ 1.3)iLze+ 1) 9lq.2) (20 +3)0¢le+2.2)

Ca= mﬁﬁ-—x)ﬁy

om+: nt

(Case I, when q is even., (Case II, when q is odd) (15)

Here, in accordance with (7)

(g +my,n) =[(¢g+ m)* Bt + ntt.

The approximate curves 1in Flg. 7 were calculated with the
ald of Eq. (14) and (15).
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Fig. 7. Coefficient c, = t . (b/2)2/D
of critical shear 1lcad of isotropic
rectangular plate as a function of
the ratio B = b/a between the sides.
Using the curves calculated for
various approximate solutions and

the known exact solution for

B = 0, the dash-dot 1line (-+---*)
gives the conjectured path of an
exact curve.

Key: a. Except for b. Exact value

b) Fundamental
criteria for wave form
(Cases I and II'.

Cases I and II differ in
that only unknowns Amn
with even sum (m + .}
occur in equation

system I and only t.iose
with odd sum (m + n)
occur in system II. 1In
the result, the new
cases differ in that
buckling I is a maximum

(w )} in the center of

max
plate, while there is

a nodal line (w = 0)
through the center of

the plate in Case II.

The approximations now
show (at first apparently
quite irregularly) that

sometimes Case I and

other times Case II ylelds the smaller critical shear 1load,

depending on the ratio b/a.

This is a circumstance that could

apply to both the approximation and the exact solution,as wili

be suggested by the followlng analysis.

Suppose we wished to calculate the critical shear load of

an Infinitely long plate of constant width b, supported freely

along the longitudinal edges, and subject to the further

/187

condition that certain polnts A along the center line of the

plate spaced at regular intervals a'
any deflection (cf. Fig. 8).

should not experilence
Solutions corresponding to this

probtlem are containzd in the curves of Fig. 2 ("exact solution"z



representing the Southwell-Skan solution for the infinitely

long plate. If a' = 1.25b (a' as in Fig. 8), then c, = 13.165

(= ¢g5 min)- In this case, the half-wavelength is & = a'.

If a' increases, c, also increases in accordance with the curve
cga(2/b), since initially 2 = a' still holds. At a' = 1.8b,

ca = 14.2. The same value ¢, is also obtained for & = 0.9b;
i.e. in this case, the same value cy is ©btained for both

£ = a' and for & = a'/2. Therefore, two buckling shapes are
possible under the same shear load. If a' goes beyond the

value 1.8b, the resulting buckling shape has two half waves in
the interval a', i.e. 2 = a'/2, and this shape always gives the
smallest value for cz. Initially, c, decreases from 14.2 to
13.165 for a' = 2.5b (i.e. 2 = 1.25b), and then ¢z increases
with increasing a back up to ¢y = 13.6. Namely, for a' = 3.0b,
this value of c, corresponds to both the buckling form with

two half-waves (£ = 1.5b) and the buckling form with 3 half-waves
(2 = 1.0b). According to this analysis, therefore, the (whole)
number m of half-waves in the interval a' increases with
increasing a'; for each number m = a'/%, ¢, can assume values
between Cas min = 13.165 and a larger value of Cy which decreases
5 Obtained for m = 1 (or

m = 2) with ¢, = 14.2. For odd numbers m, the buckling 1is
greatest (Wmax’ Case I) at the point M lying halfway between

two points A. For even m, there is a nodal line (w = 0, Case II).
With increasing a', Case I and Case II alternately give the
smallest shear load (cgy).

as m Increases. The largest such c

Passing from the specific problem to the general problem
under investigation, we acquire an additional condition, namely
that the buckling not only at the polnts A, but also on the straight
lines passing through the points A and perpendicular to the
longitudinal edges munst be equal to 0 and that the plate is /188

supported without stress along these lines. This supplementary
condition naturally willl cause substantial changes 1in the
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Fig. 8. Various possible buckling
shapes of an infinitely long plate. If
the deflection is to be w = 0 at
points A, the deflection at points M
(halfway between two points A) can be
a maximum wp,y, Oor else a nodal line
(w = 0) may pass through M.

Key: a. Sectilon

Fig. 9. Hypothetical curves for exact

Cg as a function of g.

corresponds to the buckling form

with greatest deflection wpax in the
center of the plate, while Curve II
corresponds to a nodal line (w
passing through the point 1n the

center of the plate.
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buckled shape and thus
in the magnitude of the

assoclated shear load.

The smaller the ratio

a/b, the greater the
changes. Nevertheless,

it is still altogether
possible that, as in

the problem Just discussed
(cf. Fig. 8), which is
somewhat simpler than

our present problem,

Cases I and II will
provide the smaller
(eritical) shear load in
alternation with decreasing
ratio b/a even for the
plate freely supported
along all four edges.

This would consistent

with the results of the
previous approximation.
The curves for the
critical shear load as

a function of the ratio

of the sides -- cy(b/a) --
valid for Cases I and II
might then look like those
shown in Fig. §. The

only parts of the curves
which are of actual
practical importince are
those corresponding to

the smaller of the two
values of cy4 for a



given side ratio. The estimated curve depicted 1in Fig. 7
should be derived only from these practically imrortant portilons
of the curves. This estimated curve should provide value: of
¢y accurate roughly to three places, so that the accuracy ..ught
to be sufficlent in practice.

€. Solution for the orthotropic plate. For an orthotropic
plate, the critical shear load 1s calculated by one of the
two formulas corresponding to Eqs. (4a) and (4b):

3)1/ﬂ
2

- -2
tep = Ca (DlD (b/2) (16a)

cr
or

_ 1/2 =2
ter = (D3D2) (b/2) (16b)

(For the speciul case of the isotropic plate, Eq. (16a) becomes
(13)).

The coefficients C,
the orthotropic plate as given by (3). To determine the critical

and Cp depend on the parameter 6 of

shear load of an orthotropic plate, the best way is to first
calculate the parameter 6 and then find the assoclated coefficlent
€y or cp. These coefficients are obtalned by the same method

used for calculating the coefficient c, of the 1sotropic plate

in the preceding sections; however, the starting point is Egs.
(4a) and (5a) or (4b) and (5b) instead of Egs. (7) and (8).

Except for the fact that Cy and cp are now functions of Ba and Bb -
cf. (4a) or (4b) -- and not just of B = b/a, the only major
difference relative to the isotropic plate is in the terms

¢5 (m, n) and ¢, (m, n), which occur in Egs. (5a) and (5b) in
place of the term ¢ (m, n) in (8). All of the equations for c,
for the 1isotropic plate derived from Eq. (8) alsc hold for the
coefflcients ¢y and Cy of the orthotropic plate, as long as no
specific expression for ¢ (m, n) -- and thus no specific value
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for B -- 1s substituted in these equations; ¢ and(.8 are replaced
by ¢, or ¢ and Ba or Bb‘ In particular, Egs. (14) and (15)
apply to the isotropic plate, as does Eq. (9) if, in the latter
equation, ¢(an) is replaced by the expression

at et
(2, %) =at 4+ 2-5-— 4+ n¢
v LA (17a)

or the expression

(0, 8) = $at + 2atu? + #¢
o ‘ ) (17D)

The coefficients C,y calculated for the isotropic plate applied
to an orthotroplic plate is the parameter 6 = 1 (i.e. ¢y = cb).
Apart from this case, the coefficient c, has been calculated /189
from (14) and (15) only for the parameters 6 = 2 and § = =
(replacing ¢ by ¢a and B8 by Ba). In general, these calcula-
tions will be sufficient, together with exact values calculated
in a previous work [6] for an infinitely long plate and for any
arbitrary value of 8 2 1 and for arbitrary b/a, to determine the
coefficient ¢, of the critical shear load (16a) with adequate
precision. For parameters 6 < 1 or in-case a more precise
result is desired for a parameter 8 > 1, the calculation can be

carried out Jjust as for 6 = 2 and for 6 = «,

The depiction of the curve Cy (Ba) can be restricted to
the region 0 < Ba < 1. If, in a specific case, a value B, > 1
is obtained, the desienations of the sides and of the rigidities
Dl and D2 are interchanged. It should be observed that in
certain cases (e.g. when D2 is considerably larger than D1 and
Ba = 1 or Ba is only slightly less than 1), b will be the longer
side of the rectangular plate in (l6éa). In the limiting case
8 = », as In the extreme case 8 = 0 for infinitely long plate

(b/a » 0), we use the equations corresponding to Egq. (12).
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. ,‘_-‘_-o.!?r49=°"“.——""""., == (for & = =) (152)
L ) ’;[fl'd+x+$ o + 81
- - --1h:L+4 3
c.;-o,rG:fqzoﬁ (fOI’ 8 = 0) (l8b>
ﬁz;‘+x+;§ 18a% 4 81

and find for a = 1.0 (instead of the exact valuc 0.975) or for
a = 1.04, values C,y and cp only 0.4% greater than the values

Cy < 8.125 or Cp = 11.708 corresponding to the exact solution 4,
representing the minima of the exact curve c, Or ¢y as funetion
of half-wavelengths of the buckled surface. The corresponding
approximation calculated by (12) for 6 = 1 also has an errcr

of only about 0.4% (c¢f. Table 2). Hence, the approximation
appears to furnish equally good results for all values of 0 in

the limiting case of the infinitely long plate.

On the other hand, the result in the other extreme case,
namely ek = 1, does not appear to be as good for 6 > 1 as for
§ = 1. While the value of c, dropped from 23.25 to 23.05, i.e.
by only 0.9% (cf. Table 5) for the square isotropic plate (B =
1; 8 = 1) when five indices m and n were taken instead of three,
the correspondingly calculated value of Cy for 6 = » and Ba =1
dropped from 12.07 to 11.735, i.e. by 2.85%. For B, = 1, the
convergence appears to be better for 6 = 1 than for 6 > 1; however,
for 8 = ®» and Ba = 1, the calculated approximation c; = 11.735
still appears sufficlently accurate. In addition, as mentioned
previously, approximate values Cy have been calculated vs. B
for 6 = 2 and 6 = o, taking three indices each in the

a

u[6], Table I. According to Column 9 of this Table, the values
1 were calculated as follows:

for 6 w: a = 2/2.0515

".975 = 1.0

<D
n

0: a = 2/1.9212 1.04
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longitudinal and transverse directions. The calculated curves /190
are depicted in Fig. 10. Based on these approximations and

exact values available for the limiting case Ba + 0 [6], the
estimated curves depicted in Fig. 10 for c, (Ba) were constructed.
Since the curve for 6 = 2 1s almost exactly halfway between the
curves for 6 = 1 andfor 6 = » with great regularity for all
values of Ba’ it can be assumed that the curves Cy (Ba) fcir other
values 6 than 6 = 2 will run with similar regularity between the
curves for 6 =1 and for 8 = ». For any arbitrary value 6, the
exact value c, can be given for Ba =0 °. Starting from this
point, the approximate curve Cqy (Ba) for any arbitrary value 6

can be drawn into Fig. 10.

N
@ . This diagram also
2
e-rifexcept for B,=) / includes a number of
» exact val . points for 6 = 1.41,
’ Lo obtained from the cal-

oy
fgﬁﬁ culation of Sekeriy-
/]

Tsenkovich [7], which

v
;;?’ in general corresponds
- Pa to the approximation
| = with three indices each
7 in the longitudinal
e vt and transverse direction.

For a plywood board

of thickness h, Sekerly-

Tsenkovich chose modull
v A W of elasticity for bending

Fig. 10. Coefficlent c, = t,n(b/2)2/  deformation E; = 1.4.102
(D1D§)1/“ of the critical shear load kg/cm? in one direction

of ant orthogonal-anisotropic plate as

a function of g, = (b/a)(Dl/D2;1/u, and E5 = E7/12 1in the
The precise curves have been estimated other, G = 0.12-10°
for 6 = 2 and for 6 = « in the same . P .

way as in Fig. 7 for o = 1. kp/cm® for the sucur

? cf. [61, Fig. 2a. In Fig. 10 of this work, the precise value c,

for 6 = 1.41, 3, 5 and 10 are entered along with those for 8 =
1, 2 r.nd <,
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modulus (of torsion deformation), and v, = 0.46 and vy = vx/l2
for the Poisson ratlos, and thus obtained by (la):

D, = 12,000 h3 kg/em?; D, = 1000 h3 kg/cm?, and

D3 = 2456 h3 kg/em2 and according to (3): 6 = 1.41.

The approximate value of c, obtained by the Sekeriy-Tsenkovich

1.41 is quite consistent with the approximate
l, 2 and .

calculation for 6

curves found for 6

7. Summary. The c¢ritical shear load L for an 1sotropic
rectangular plate supported without stress at the edg-s can be
calculated by (13). In this equation, b 1s the width of the
plate, D is the plate rigidity obtained from (6), and c, is a
coefficient taken from the diagram in Fig. 7. Analogously, /191
(16a) applies to the case of an orthogonal-anisotropic plate;
the coefficient ¢z vccurring in (16a) is depicted in the diagram
of Fig. 10. The rigidities Dy, Dy and D3 of the orthogonal-
anisotropic plate are given by Eq. (la). The determination of
the coefficients cy a d ¢, 1s described in Section 6. When the
parameter 8 given by (3) 1is greater t‘han unity, it is best to
wse Eq. (16a); on the other hand, Eq. (16b) is better for
parameters 0 < 1.

A detalled study has shown that the coefficilent Cay of the
critical shear load calculated in thils work on the basis of an
approximation theory should be sufficiently accurate (the error
probably does not occur until the second place following the
decimal point), particularly since theoretical assumptions are
almost never satisfled exactly; for instance, as the result of
completed experiments have 1ndicated, a very slight initial
bulge (practically unavoidable) has an especially great disturbing

effect in the case of very thin plates.

37



These experiments as well as numerical eramples of the
problem dlscussed 1n this work will be communicated in a further
report [9].
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